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A bit of history...

Idea of neutrino oscillations: First put forward by Pontecorvo
in 1957. Suggested possibility of ν ↔ ν̄ oscillations by
analogy with K0K̄0 oscillations.
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Theory and phenomenology ofν oscillations

I. Theory
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Leptonic mixing

For mν 6= 0 weak eigenstate neutrinos νe, νµ, ντ do not
coincide with mass eigenstate neutrinos ν1, ν2, ν3

Diagonalization of leptonic mass matrices:

eL → VL eL , νL → UL νL . . . ⇒

−Lw+m =
g√
2
(ēLγµ V †

l UL νL) Wµ + diag. mass terms

Leptonic mixing matrix: U = V †
l UL

♦ |νfl
a 〉 =

∑

i

U∗
ai |νmass

i 〉
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Oscillation probability in vacuum

For relativistic neutrinos: E ≃ p + m2

2p
, L ≃ t,

♦ P (νa → νb;L) =

∣

∣

∣

∣

∑

i Ubi e−i
m2

i
2p

L U∗
ai

∣

∣

∣

∣

2

– standard oscillation formula. For 2-flavor oscillations
(good first approximation in many cases):

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉

|νµ〉 = − sin θ |ν1〉 + cos θ |ν2〉

♦ Ptr = sin2 2θ sin2

(

∆m2

4E
L

)
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Modes of neutrinos oscillations

Depend on the character of neutrino mass terms:
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Dirac mass terms ν̄LmDNR + h.c.:
⋄ active - active oscillations νaL ↔ νbL (a, b = e, µ, τ)

⋄ Neutrinos are Dirac particles

Majorana mass terms ν̄LmL(νL)c + h.c.:
⋄ active - active oscillations νaL ↔ νbL

⋄ Neutrinos are Majorana particles

Dirac + Majorana mass terms
ν̄LmDNR + ν̄LmL(νL)c + N̄RM(NR)c + h.c.:
⋄ active - active oscillations νaL ↔ νbL

⋄ active - sterile oscillations νaL ↔ (NbR)c ≡ (N c
b )L

⋄ Neutrinos are Majorana particles
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Modes of ν oscillations – contd.

Would observation of active - sterile ν oscillations mean that
neutrinos are Majorana particles?

– Not necessarily!

In principle one can have active - sterile oscillations with
only Dirac - type mass terms at the expense of introducing
additional species of sterile neutrinos with opposite L
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Neutrino oscillations in matter

The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985)

Matter can change the pattern of neutrino oscillations drastically
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Neutrino oscillations in matter

Coherent forward scattering on the particles in matter

V CC
e ≡ V =

√
2 GF Ne

2f neutrino evolution equation:

♦ i
d

dt

(

νe

νµ

)

=

(

−∆m2

4E
cos 2θ + V ∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

)(

νe

νµ

)
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Mixing in matter

♦ sin2 2θm =
sin2 2θ · (∆m2

2E
)2

[∆m2

2E
cos 2θ −

√
2GFNe]2 + (∆m2

2E
)2 sin2 2θ
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♦
√

2GFNe = ∆m2
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cos 2θ

At the resonance: θm = 45◦ (sin2 2θm = 1) – maximal mixing

|νe〉 = cos θm |ν1m〉 + sin θm |ν2m〉

|νµ〉 = − sin θm |ν1m〉 + cos θm |ν2m〉

Ne ≫ (Ne)res : θm ≈ 90◦

Ne = (Ne)res : θm = 45◦

Ne ≪ (Ne)res : θm ≈ θ

|ν1m〉, |ν2m〉 – eigenstates of H in matter (matter eigenstates)
Evgeny Akhmedov Neutrino 2006 Santa Fe June 14, 2006 – p. 12



Hi

ρρ

ν

R

ν
2m

1m

Adiabatic flavour conversion

Adiabaticity: slow density
change along the neutrino
path

sin2 2θ

cos 2θ

∆m2

2E
Lρ ≫ 1

Lρ – electron density scale
hight:

Lρ =

∣

∣

∣

∣

1

Ne

dNe

dx

∣

∣

∣

∣

−1
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2f conversion probability

Simple and useful formula for 2f conversion probability
averaged over production/detection positions (or small energy
intervals) (Parke, 1986):

♦ P tr = 1
2
− 1

2
cos 2θi cos 2θf (1 − 2P ′)

θi, θf – mixing angles in matter in the initial and final points,
P ′ – hopping probability.

P ′ :







≪ 1 in adiab. regime

sin2(θi − θf ) in extreme non − adiab. regime
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Analogy: Spin precession in a magnetic field

I = 

R = 

ν

ν

ν

φ

z

x

y

P - 1/2

mθ2

νB
ν

R

I

P - 1/2

B
f

Bi

B

P - 1/2

I

R

B

B

B

B

ν

d~S

dt
= 2( ~B × ~S)

~S = {Re(ν∗
eνµ) , Im(ν∗

eνµ) , ν∗
eνe − 1/2}

~B = {(∆m2/4E) sin 2θm , 0 , V/2 − (∆m2/4E) cos 2θm}
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Analogy: Two coupled pendula

Mechanical model of the MSW effect
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Evidence for the MSW effect

V (x) ⇒ aMSWV (x); aMSW = 1 strongly favoured
(Fogli et al. 2003, 2004; Fogli & Lisi 2004)

More on MSW effect: talk of A. Friedland
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Theory and phenomenology ofν oscillations

II. Phenomenology

Evgeny Akhmedov Neutrino 2006 Santa Fe June 14, 2006 – p. 19



3ν vs Nν ≥ 4 oscillation schemes

All current ν data except LSND can be explained in terms of
oscillations between the 3 known neutrino species (νe, νµ, ντ ).
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3ν vs Nν ≥ 4 oscillation schemes

All current ν data except LSND can be explained in terms of
oscillations between the 3 known neutrino species (νe, νµ, ντ ).

LSND: most likely would require ≥ 1 light sterile neutrinos νs

(though some exotic scenarios exist: CPT violation, violation of Lorentz

invariance, MaVaN, shortcuts in extra dimensions, decaying νs, ...)

MiniBooNE to confirm or refute the LSND result – an answer
expected very soon!

But: even if the LSND result is not confirmed, this would not
exclude the possibility of light sterile neutrinos and νa ↔ νs

oscillations – an intriguing possibility with implications to particle
physics, astrophysics and cosmology
More on sterile neutrinos: talk of A. Kusenko
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3f neutrino mixing and oscillations

For 3 neutrino species: mixing matrix Ũ depends on θ12, θ23, θ13,

δCP, σ1,2. Majorana-type ��CP phases can be factored out in the
mixing matrix:

Ũ = UK , K = diag(1 , eiσ1 , eiσ2)

⇒ Majorana-type phases do not affect neutrino oscillations.
The relevant part of the mixing matrix:

U =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









= O23 (Γδ O13 Γ†
δ) O12 , Γδ ≡ diag(1 , 1 , eiδCP)
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Leptonic mixing – contd.

U =









c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23









Normal hierarchy: Inverted hierarchy:

ν

ν

ν

2

3

ν

ν

ν

1

solm∆

atmm∆

2

2

e

µ

τ

ν

ν

ν

∆m

∆m2
sol

2
atm

3

2
ν

ν

ν

τ

e

1

µ
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2f and effective 2f approximations

2f description: A good 1st approximation in most cases.
Reasons:

Hierarchy of ∆m2: ∆m2
sol ≪ ∆m2

atm

Smalness of |Ue3|.
Exceptions: P (νµ ↔ ντ ), P (νµ → νµ) and P (ντ → ντ ) when
oscillations due to the solar frequency (∼ ∆m2

sol) are not frozen.

In any case, coorections due to 3-flavorness can reach ∼ 10%

– cannot be ignored at present

Also: a number of pure 3f effects exist ⇒

♦ 3f analyses are a must !
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Effective 2f approximations

For oscillations driven by ∆m2
sol ν3 essentially decouples. Still a

“memory” of ν3 through unitarity ⇒ powers of c13. Examples:

Survival probability of solar νe (Lim, 1987)

(the same for reactor ν̄e in KamLAND) :

♦ P (νe → νe) ≃ c4
13P2ee(∆m2

21, θ12, c2
13V ) + s4

13 ,

3f effects for Day-Night effect for solar νe :
While PD(νe) ∝ c4

13,

PN (νe) − PD(νe) ∝ c6
13

(Blennow, Ohlsson & Snellman, 2004; E.A., Tortola & Valle, 2004)

Deviations from 2f results: (1 − c4
13) ≤ 0.1, (1 − c6

13) ≤ 0.13
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Reactor ν̄e oscillations
ν̄e survival probability:

♦ Pēē ≃ 1 − sin2 2θ13 · sin2
(

∆m2
31

4E
L
)

− c4
13 sin2 2θ12 · sin2

(

∆m2
21

4E
L
)

CHOOZ, Palo Verde, Double CHOOZ, ... (L . 1 km)

E ∼ 4 MeV ;
∆m2

31

4E
L ∼ 1 ;

∆m2
21

4E
L ≪ 1

One mass scale dominance (2f) approximation:

⋄ P (ν̄e → ν̄e;L) = 1 − sin2 2θ13 · sin2

(

∆m2
31

4E
L

)

(Note: Term ∼ sin2 2θ12 cannot be neglected if θ13 . 0.03, which is about

the reach of currently discussed future reactor experiments)
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Reactor ν̄e oscillations – contd.

KamLAND (L̄ ≃ 170 km): ∆m2
21

4E
L & 1 ;

∆m2
31

4E
L ≫ 1

⋄ P (ν̄e → ν̄e) ≃ c4
13P2ēē(∆m2

21, θ12)

N.B.: Matter effects a few % – can be comparable with
effects of θ13 6= 0 !
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Theory and phenomenology ofν oscillations

Genuine 3f effects
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����
CP and �

�T in ν oscillations in vacuum

��CP : P (νa → νb) 6= P (ν̄a → ν̄b)

�T : P (νa → νb) 6= P (νb → νa)

CPT invariance: ⋄ P (νa → νb) → P (ν̄b → ν̄a)

��CP ⇔ �T – consequence of CPT

Measures of ��CP and �T – probability differences:

∆PCP
ab ≡ P (νa → νb) − P (ν̄a → ν̄b)

∆PT
ab ≡ P (νa → νb) − P (νb → νa)

From CPT:
⋄ ∆PCP

ab = ∆PT
ab ; ∆PCP

aa = 0
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3f case

One Dirac-type phase δCP ⇒ one ��CP and �T observable:

⋄ ∆PCP
eµ = ∆PCP

µτ = ∆PCP
τe ≡ ∆P
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3f case

One Dirac-type phase δCP ⇒ one ��CP and �T observable:

⋄ ∆PCP
eµ = ∆PCP

µτ = ∆PCP
τe ≡ ∆P

∆P = − 4s12 c12 s13 c2
13 s23 c23 sin δCP

×
[

sin

(

∆m2
12

2E
L

)

+ sin

(

∆m2
23

2E
L

)

+ sin

(

∆m2
31

2E
L

)]
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3f case

One Dirac-type phase δCP ⇒ one ��CP and �T observable:

⋄ ∆PCP
eµ = ∆PCP

µτ = ∆PCP
τe ≡ ∆P

∆P = − 4s12 c12 s13 c2
13 s23 c23 sin δCP

×
[

sin

(

∆m2
12

2E
L

)

+ sin

(

∆m2
23

2E
L

)

+ sin

(

∆m2
31

2E
L

)]

Vanishes when
At least one ∆m2

ij = 0

At least one θij = 0 or 90◦

δCP = 0 or 180◦

In the averaging regime

In the limit L → 0 (as L3)
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3f case

One Dirac-type phase δCP ⇒ one ��CP and �T observable:

⋄ ∆PCP
eµ = ∆PCP

µτ = ∆PCP
τe ≡ ∆P

∆P = − 4s12 c12 s13 c2
13 s23 c23 sin δCP

×
[

sin

(

∆m2
12

2E
L

)

+ sin

(

∆m2
23

2E
L

)

+ sin

(

∆m2
31

2E
L

)]

Vanishes when
At least one ∆m2

ij = 0

At least one θij = 0 or 90◦

δCP = 0 or 180◦

In the averaging regime

In the limit L → 0 (as L3)

Very difficult to
observe!

See talk of O. Mena
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����
CP and �

�T in ν oscillations in matter
Normal matter [(# of particles) 6= (# of anti-particles)]:
The very presence of matter violates C, CP and CPT

⇒ Fake (extrinsic) ��CP . Exists even in 2f case. May

complicate study of fundamental (intrinsic) ��CP
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����
CP and �

�T in ν oscillations in matter
Normal matter [(# of particles) 6= (# of anti-particles)]:
The very presence of matter violates C, CP and CPT

⇒ Fake (extrinsic) ��CP . Exists even in 2f case. May

complicate study of fundamental (intrinsic) ��CP

Matter with density profile symmetric w.r.t. midpoint of neutrino

trajectory does not induce any fake �T . Asymmetric profiles do,
but only for N ≥ 3 flavors – an interesting 3f effect.

⋄ May fake fundamental �T and complicate its study
(extraction of δCP from experiment)

Induced �T : absent when either Ue3 = 0 or ∆m2
sol = 0 (2f limits)

⇒ Doubly suppressed by both these small parameters
– effects in terrestrial experiments are small
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Matter effects on νµ ↔ ντ oscillations
In 2f approximation: no matter effects on νµ ↔ ντ oscillations
[V (νµ) = V (ντ ) modulo tiny rad. corrections].
Not true in the full 3f framework! (E.A., 2002; Gandhi et al., 2004)
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Theory and phenomenology ofν oscillations

Another possible matter effect
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Parametric resonance in neutrino oscillations
Parametric resonance in oscillating systems with varying
parameters: occurs when the rate of the parameter change is
correlated in a certain way with the values of the parameters
themselves
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Parametric resonance in neutrino oscillations
Parametric resonance in oscillating systems with varying
parameters: occurs when the rate of the parameter change is
correlated in a certain way with the values of the parameters
themselves

Ω Ω

For small-ampl. osc.:

Ωres =
2ω

n

n = 1, 2, 3...
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Different from MSW eff. – no level crossing !
An example admitting an exact analytic solution – “castle wall”
density profile (E.A., 1987, 1998):

x

ρ

ρ

L L1 2

ρ

1

2

Resonance condition:

X3 ≡ −(sinφ1 cos φ2 cos 2θ1m + cos φ1 sin φ2 cos 2θ2m) = 0

φ1,2 – oscillation phases acquired in layers 1, 2
Evgeny Akhmedov Neutrino 2006 Santa Fe June 14, 2006 – p. 34



0.0 1.0 2.0 3.0 4.0
0.00e+00

1.00e−12

0.0 1.0 2.0 3.0 4.0
0.0

0.2

0.4

0.6

0.8

1.0

Evgeny Akhmedov Neutrino 2006 Santa Fe June 14, 2006 – p. 35



Earth’s density profile (PREM model) :
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Param. res. condition: (losc)matt ≃ ldensity mod.

Fulfilled for νe ↔ νµ.τ oscillations of core-crossing ν’s in the
Earth for a wide range of energies and zenith angles !
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dependence

(EA, Maltoni & Smirnov, 2005)
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♦ Parametric resonance of ν oscillations in the Earth:
can be observed in future atmospheric or accelerator
experiments if θ13 is not much below its current upper limit
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Theory and phenomenology ofν oscillations

Some recent developments
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Oscillations of low-E neutrinos in matter

Equivalently: Oscillations in low-density matter (V ≪ ∆m2

2E
).

Matter effects small – can be considered in perturbation theory.
Implications: oscillations of solar and SN neutrinos in the Earth.
In 3f framework

P⊕
2e − P

(0)
2e =

1

2
c4
13 sin2 2θ12

∫ L

0

dxV (x) sin



2

L
∫

x

ω(x′) dx′





where

⋄ ω(x) =
√

[cos 2θ12 δ − c2
13V (x)/2]2 + δ2 sin2 2θ12 , δ =

∆m2
21

4E

2f case (θ13 = 0): de Holanda, Liao & Smirnov, 2004; Ioannisian &

Smirnov, 2004; 3f case: E.A., Tórtola & Valle, 2004
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Attenuation effect
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Oscillations above the MSW resonance

Equivalently: oscillations in dense matter (V > δ ≡ ∆m2

4E
)

Oscillation probability in matter of arbitrary density profile:

P = δ2 sin2 2θ

∣

∣

∣

∣

∫ L

0

dxe−2iφ(x)

∣

∣

∣

∣

2

, φ(x) =

∫ x

0

dx′ω(x′) − adiab.phase
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Unsettled issues?
A number of issues in ν oscillation theory still being debated

Equal energies or equal momenta?

Evolution in space or in time?

Claim: evolution in time is never observed.

Is wave packet description necessary?
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Unsettled issues?
A number of issues in ν oscillation theory still being debated

Equal energies or equal momenta?
– Neither equal E nor equal p exact. But: for relativistic

neutrinos, both give the correct answer

Evolution in space or in time?
– Both are correct and equivalent for relativistic neutrinos
Claim: evolution in time is never observed.
– Incorrect. Examples: K2K, MINOS

Is wave packet description necessary?
– Yes, if one wants to rigorously justify the standard

oscillation probability formula. Once done, can be forgotten
unless the issues of coherence become important.
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Do charged leptons oscillate?
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oscillation phase. But: theoretically interesting and
important to study the limits of applicability.
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Unsettled issues?

Do charged leptons oscillate?
– No, they don’t

Is the standard oscillation formula correct?
– Yes, it is. In particular, no extra factors of two in the

oscillation phase. But: theoretically interesting and
important to study the limits of applicability.

A number of subtle issues of oscillation theory remain unsettled
(e.g., rigorous wave packet treatment, limits of applicability of
standard formula, oscillations of non-relativistic neutrinos, ...).
At present, this is (rightfully) of little concern for practitioners.
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Future tasks

Search for best strategies for measuring neutrino
parameters

Study of subleading effects and effects of non-standard
neutrino interactions

Study of the domains of applicability and limitations of
the current theoretical framework

Future experimental results may bring some new surprises
and pose more challenging problems !

Evgeny Akhmedov Neutrino 2006 Santa Fe June 14, 2006 – p. 46



Backup slides
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General properties ofPab

3 flavours ⇒ 3 × 3 = 9 probabilities

Pab = P (νa → νb),

plus 9 probabilities for antineutrinos Pāb̄.
Unitarity conditions (probability conservation):

∑

b

Pab =
∑

a

Pab = 1 (a, b = e, µ, τ)

5 indep. conditions ⇒ 9 − 5 = 4 indep. probabilities left.
Additional symmetry: the matrix of matter-induced potentials
diag(V (t), 0, 0) commutes with O23 ⇒ additional relations
between probabilities.
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Dependence onθ23 and # of indep.Pab

Define

P̃ab = Pab(s
2
23 ↔ c2

23, sin 2θ23 → − sin 2θ23)

(e.g., θ23 → θ23 + π/2). Then

Peτ = P̃eµ Pτµ = P̃µτ Pττ = P̃µµ

2 out of 3 conditions are independent ⇒ 4 − 2 = 2

indep. probabilities (e.g., Peµ and Pµτ ) ⇒

♦ All 9 neutrino ocillation probabilities can be expressed through
just two! (E.A., Johansson, Ohlsson, Lindner & Schwetz, 2004)

Pāb̄ = Pab(δCP → −δCP, V → −V ) ⇒

♦ All 18 ν and ν̄ probab. can be expressed through just two
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General dependence onδCP

Another use of essentially the same symmetry: rotate by

O′
23 = O23 × diag(1, 1, eiδCP)

From commutativity of diag(V (t), 0, 0) with O′
23 ⇒

General dependence of probabilities on δCP:

Peµ = Aeµ cos δCP + Beµ sin δCP + Ceµ

Pµτ = Aµτ cos δCP + Bµτ sin δCP + Cµτ

+ Dµτ cos 2δCP + Eµτ sin 2δCP

(Yokomakura, Kimura & Takamura, 2002)
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3f effects in atm. ν oscillations

⋄ ∆m2
21 → 0 (E.A., Dighe, Lipari & Smirnov, 1998) :

Fe − F 0
e

F 0
e

= P2(∆m2
31, θ13, VCC) · (r s2

23 − 1)

⋄ s13 → 0 (Peres & Smirnov, 1999) :

Fe − F 0
e

F 0
e

= P2(∆m2
21, θ12, VCC) · (r c2

23 − 1)

At low energies r ≡ F 0
µ/F 0

e ≃ 2; also s2
23 ≃ c2

23 ≃ 1/2 –
a conspiracy to hide oscillation effects on e-like events!
Reason: a peculiar flavour composition of the atmospheric ν flux.

(Because of θ23 ≃ 45◦, Peµ ≃ Peτ ; but the original νµ flux is ∼ 2 times

larger than νe flux ⇒ compensation of transitions from and to νe state).
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Breaking the conspiracy – 3f effects

Fe − F 0
e

F 0
e

≃ P2(∆m2
31, θ13) · (r s2

23 − 1)

+ P2(∆m2
21, θ12) · (r c2

23 − 1)

− 2s13 s23 c23 r Re(Ã∗
ee Ãµe)

Interference term not suppressed by the flavour composition of the νatm flux;

may be (partly) responsible for observed excess of upward-going sub-GeV

e-like events

Interf. term may not be
sufficient to fully explain
the excess of low-E e-like
events – a hint of θ23 6=
45◦? (Peres & Smirnov, 2004)
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Evolution in the rotated basis
Evolution matrix S(t, t0): ν(t) = S(t, t0) ν(t0). Satisfies

♦ i
d

dt
S(t, t0) = H S(t, t0) with S(t0, t0) = 1 .

H = (O23 Γδ O13 Γ†
δ O12 ) diag(0, δ, ∆) (OT

12 ΓδO
T
13 Γ†

δ OT
23) + diag(V (t), 0, 0)

= (O23 Γδ O13 O12 ) diag(0, δ, ∆) (OT
12 OT

13 Γ†
δ OT

23) + diag(V (t), 0, 0)

where

δ ≡ ∆m2
21

2E
, ∆ ≡ ∆m2

31

2E

Oscillation probabilities:

Pab = |Sba|2

Define
O′

23 = O23 Γδ

The matrix diag(V (t), 0, 0) commutes with O′
23 ⇒ go to the rotated basis
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Evolution in the rotated basis – contd.

ν = O′
23 ν′ , or S(t, t0) = O′

23 S′(t, t0) O′
23

†
,

In the rotated basis H ′ = O′
23 H O′

23

†. Explicitly:

H ′(t) =









s2
12c

2
13δ + s2

13∆ + V (t) s12c12c13δ s13c13

(

∆ − s2
12δ
)

s12c12c13δ c2
12δ −s12c12s13δ

s13c13

(

∆ − s2
12δ
)

−s12c12s13δ c2
13∆ + s2

12s
2
13δ









Dependence on θ23 and δCP can be obtained in the general case by rotating
back to the original flavour basis. Also: easy to apply PT approximations

If ∆m2

21

2E
L ≪ 1 – neglect δ =

∆m2

21

2E

If θ13 is very small – neglect s13

or use expansion in these small parameters
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